Euristiq donates all profit to Ukraine
Company statement
read more


Bluetooth vs. WiFi for Your IoT Project: What Technology to Choose?

Ivan Muts
July 31, 2023
10 mins to read

Table of Contents

    When it comes to software project planning, lots of clients who are new to IoT-based software development in the consumer sector have difficulties in choosing the right network. Usually, this choice is between Bluetooth vs. WiFi in IoT. Let’s dig deeper into this task and see what connectivity will work best for your project.

    The term Internet of Things has been known since 1999 and was coined by consumer sensor expert Kevin Ashton. Having paved its development journey, IoT has conquered the attention of business leaders worldwide, growing significantly in the past decade. Cloud computing adoption, enhancement of connectivity capabilities, development of data analytics tools, and the invention of low-cost devices accelerated the adoption of IoT across industries.

    Wireless communication technologies have also been developed making the choice for businesses difficult. In this article, we are going to talk about the two most widespread options of connectivity for IoT product development in the consumer sector: WiFi and Bluetooth. The selection depends on business requirements, technical criteria, and IoT network type.

    What’s the difference between Bluetooth and WiFi? Here is a concise video with a comparison that will help you understand what technology your project lacks. 

    What is Bluetooth?

    Bluetooth is a wireless technology that can transfer data between connected devices within short distances using ultra-high-frequency radio waves (UHF). The technology is geared at creating personal area networks (PANs) allowing to connect wireless devices consuming less power in comparison with WiFi technology. However, Bluetooth does not support high data transfer speed. Therefore, low power consumption makes it impossible to exchange data over a wide communication range (up to 33 feet).

    Wifi IoT devices, Euristiq

    What is WiFi?

    WiFi is a wireless technology based on the IEEE 802.11 standard enabling the communication of radio signals between wireless routers and access points.

    Compared to other wireless technologies like cellular, for instance, WiFi transmits data at much higher frequencies – 2.4 GHz or 5 GHz. On the other hand, WiFi consumes a lot of power and doesn’t have a lot of range. WiFi has several standards that come with various pros/cons related to data speed, cost and a couple of WiFi IoT standards.

    Bluetooth IoT devices, Euristiq

    Bluetooth vs. WiFi for IoT project: Technical criteria

    To help you select the best technology for your IoT product, we will point out the critical technical aspects worth considering before choosing a connectivity option for your solution.

    Bluetooth vs WiFi Speed

    Is Bluetooth faster than WiFi? Compared to BLE, WiFi technology is the winner if it concerns the speed of data transmission. Bluetooth bandwidth is around 1Mbps, that’s why it is capable of transferring small chunks of data in contrast to WiFi which can send data with a range of 1,3 Gbps. If you compare Bluetooth Classic and BLE, the last one can transfer data at a rate of approximately 100-250 KBps which is 2-3 times slower.

    Bluetooth vs. WiFi Range

    The transmission distance of wireless communication between sensors/devices is defined by the type of the product, the presence of obstacles, and additional extensions. In terms of Bluetooth, different modules determine the transmission range. For example, while Class 1 devices can transfer the Bluetooth radio signals up to a maximum range of 100 meters, the average range of consumer Bluetooth devices is 10 meters. However, mesh networks allow the creation of large-scale networks so that there is the usage of more relay nodes that can be substituted in case one node fails. It means in case of failure, with the help of a mesh network there will be defined another node capable of data transmission which makes the range extended up to 1000 meters.

    In the case of WiFi, it can transfer data at a range of 100 meters and this figure can be extended as well due to additional access points and signal extenders. Even though extension options allow additional hubs, the entire network can become vulnerable which can cause adverse impacts on IoT projects.

    Bluetooth vs. WiFi Power Consumption

    Being a low-bandwidth communication standard, BLE requires small power consumption due to the possibility of transmitting huge amounts of data in small data chunks. For instance, while iBeacons are able to transfer signals for about 10 meters, the WiFi signals offer a more robust network with 10X more range. Therefore, WiFi requires much more power (about 500µW).

    From a practical and technical point of view, BLE technology prevails over WiFi thanks to its seamless lightweight connection in comparison with WiFi technical requirements. If you need to detect nearby devices and estimate indoor location, applying the BLE solution will be your win-win solution.


    If your data transmission is sensitive and delicate, WiFi is designed to satisfy these concerns using 256-bit encryption while Bluetooth uses 129-bit encryption. With modern security protocols WPA2 and WPA3, WiFi is a more secure solution for IT projects. However, Bluetooth can be a safe option for most purposes since CCM mode is used to encrypt data. In the case of WiFi security, your data is exposed to unplanned exchange unless you have your own WiFi network.

    Proximity Detection

    When we talk about proximity, Bluetooth may be a better option for indoor location and navigation (for example, via IBeacons), while WiFi suits open-space environments better. When you want to know where and how your customers and assets interact and how to enhance customers’ experience, Bluetooth is a great option due to its efficient power consumption and lesser range allowing more accuracy in comparison with WiFi technology.


    There are many topology options available that Bluetooth technology can employ. The selection depends on the wireless connectivity needs of your unique business project. Before proceeding to the types of Bluetooth topology it is worth mentioning that the Bluetooth architecture is defined by two networking types: pinocet and scatternet. There is one primary node (master) and 7 active secondary nodes (slaves) in the pinocet architecture type. The communication between them can be performed in the format 1:1 and 1:many.

    In this way, the connection between the devices can be point-to-point, broadcast, and mesh networking. Since point-to-point communication is geared at data transferring between multiple devices it is a good fit for health monitors, fitness trackers, etc. With broadcast topology, the communication is performed in the format of one-to-many when one device sends data to many others. This communication topology is suitable for such use cases as indoor navigation and asset monitoring for retail sectors. If you need thousands of devices to communicate seamlessly and reliably, mesh networking allows for large-scale networks providing the possibility of substitution of getaway or node in the case of failure. Mesh networking is the ideal solution for control and automation systems.

    Star topology is inherent to WiFi technology where point-to-point architecture is defined by the communication of multiple devices via a central hub. The main disadvantage of this type of topology is that devices cannot communicate with each other which can affect the smooth transmission path making the entire network inoperable. Star architecture will be a good solution for large facilities with multifold sensors distributed around aiming to implement a cost-effective and easy to manage solution. Reliability is one more beneficial characteristic of star topology allowing one to easily identify the faulty node, however, there is also a paradoxical factor when the central hub has a single point of failure which means in case of failure the entire network is prone to termination.

    WiFi vs. Bluetooth: IoT use cases

    Establishing communication through Bluetooth and WiFi in IoT requires meeting certain standards. Bluetooth is preferable for indoor use cases, WiFi is more suitable for the outdoor environment. Let’s go through the most widespread IoT applications backed by WiFi and Bluetooth technology across industries.

    1. Beacon technology.

    It is a cost-effective IoT solution for retailers to gather all necessary information about their customers, analyze it, and enhance their experiences by implementing tailored marketing strategies. By 2025, there are predictions of IoT revenue growing up to $35,5 billion. Among use cases, we would outline the following:

    2. Remote monitoring systems.

    With IoT capabilities integrated into enterprise systems and powered by predictive maintenance, businesses are empowered to make smart predictions of issues, implement automation, track assets in real time, and optimize them, reducing the time for their repair. Here we talk about remote monitoring systems that can make your products more connected to enhance business performance. IoT sensors mounted on the equipment or assets can help generate real-time data that you can use for remote monitoring and control of patients or medical assets. Moreover, businesses can monitor equipment to get complete visibility over assets to increase their uptime and improve efficiency and productivity.

    Remote monitoring systems backed by Bluetooth or WiFi technologies are able to automate your home by monitoring energy usage and automatically adjusting HVAC to prevent fire breakouts and water leakages, etc.

    3. Indoor positioning systems.

    Indoor positioning systems enable the tracking of objects and assets in the interior space with the help of internal sensors that communicate with each other. The gathered data is transmitted to the application or software where analytics represent an accurate location of people or objects. For instance, while the customers can benefit from positive experiences or tenants from enhanced productivity and wellbeing, businesses can gain new revenue streams by improving building management. Let’s take a look at some examples where IPSs can bring indispensable outcomes:

    3. Asset tracking.

    In a nutshell, custom IoT-based software solutions can be implemented across industries and deliver such advantages as real-time visibility of physical assets and people, cost efficiency, downtime prevention, data accuracy, and protection from theft. Let’s break down the benefits across industries to draw a holistic point of view on how asset tracking can be valuable exactly for your IoT project.

    Final word

    What is the difference between WiFi and Bluetooth? There is no unambiguous answer to the question of what technology will be better suitable for your IoT project. While Bluetooth is the most commonly used technology due to its low power consumption and simple configuration, WiFi allows a more robust network with 10X more range and more possibilities for transferring huge complicated data. Moreover, an essential factor while selecting the appropriate technology is the proximity distance: WiFi best works in open-space environments, while Bluetooth has more applicable use cases for indoor positioning systems.


    What is the difference between Bluetooth and WiFi?

    The difference in range of operation makes Bluetooth most suited for short-range, low-power applications. Meanwhile, WiFi works better for high-speed data transfers.

    When to use WiFi vs Bluetooth?

    It is recommended to use WiFi when internet connectivity is required, for transferring large files, creating a wireless network for multiple devices to connect, and for long-range communication. Bluetooth is used for quick device pairing when internet connectivity is not required.

    How much data does Bluetooth use?

    The data transfer rate of Bluetooth technology used for audio streaming, file transfer, or peripheral device connections ranges from 1 Mbps to 3 Mbps. Bluetooth low-energy used for fitness trackers, smartwatches, and other IoT devices has a data transfer rate of around 1Mbps or less.

    How to optimize IoT WiFi connectivity?

    To optimize WiFi connectivity for IoT devices, ensure proper coverage by selecting the appropriate WIFi channel, using the 5GHz band whenever possible. Status IP, optimized route setting, and updated firmware are also factors to consider.

    How to secure WiFi for IoT devices?

    To secure your WiFi network for IoT devices, you must change default credentials, enable strong encryption, like WPA2 or WPA3, and turn off SSID broadcast.

    Rate this article!

    5.00 out of 5, 2 ratings.
    Very good!